Neutrino cross-sections (at all energies) - experiment

Spencer Klein, LBNL & UC Berkeley

Presented at the Workshop on Tau Neutrinos from GeV to EeV 2021 Collider Sept. 28-Oct. 1, 2021

- Fixed target accelerator Measurements
 - ◆ (Some) Current studies
 - Future studies
- FASERy at the LHC
- Neutrino Telescope Measurements
 - ◆ Low-energy studies
- Prospects with radio-detection of neutrinos
- Conclusions

Classes of experiments

- N_{evts} ~σ * flux * volume * time
 - Accelerator
 - ◆ Low-energy vTelescope studies
 - Requires good knowledge of flux
- v absorption studies
 - In the Earth
 - ♦ High-energy vTelescope
 - ~ mostly flux independent, but must know angular distribution
 - Other systematics
- For both, v/vbar ratio matters

The cross-section landscape

- Deep Inelastic Scattering dominates for E_v > 100 GeV
 - Charged and neutral current
- Resonant reactions: νN-> νN*π/...
 - Relative rates to different final states are not well known
 - Much nuclear physics enters
- Quasi-elastic: vN-> vN(*)
- $\sigma(v) > \sigma(vbar)$ due to valence quarks
 - ◆ Difference disappears as E-> ∞
- Nuclear composition affects σ
- Diffractive reactions & Glashow resonances appear at high energies

Accelerator studies

- Historically v energies up to 400 GeV at Fermilab
 - ◆ 5-10% precision possible
- Current focus lower energy v are better for oscillations studies -> current maximum available E_v ~ 50 GeV
- Few new measurements of v cross-sections

MINER VA

- MINERvA is a Fermilab experiment to study v interactions on a variety of nuclear targets
- Useful for tuning models (GENIE)

Hydrogen target

Nuclear Targets in MINERVA

- Charged Current DIS: μ + hadronic shower
 - ◆ x, Q² determined from scattered muon
 - ◆ Requires Q² > 1 GeV²
- Data on carbon, iron and lead targets
- Significant nuclear shadowing at low x in lead
 - Not reproduced in the models that they used

Future accelerator prospects

- DUNE argon targets; well covered elsewhere in workshop
- FASERy at CERN
 - Forward neutrinos from the LHC
 - 480 m downstream from ATLAS
 - W-emulsion in front of FASER spectrometer (μ charge, energy...)
 - ♦ v cross-sections for all three flavors up to E ~ 5 TeV

FASERv cross-section projections

 \sim v cross-sections for all three flavors up to E \sim 5 TeV

v events seen in a 2018 pilot run

- Full detector installation ~ now for LHC Run 3
- Follow-on experiments possible

IceCube intermediate energy measurement

- N_{evts} ~σ * flux * volume * time
 - Relies on knowing atmospheric flux
 - Tied to accelerator measurements to constrain flux
 - Predicted uncertainties ~ 10%
- 9 years of ν_μ data
- Energy range 100 GeV to 5 TeV
 - ◆ A very wide energy range (a feature of most vTelescope studies)
 - ◆ v/vbar ratio affects measured cross-section

Earth absorption measurements – where to look

- Earth absorption increases with increasing E_v & with increasing path length
 - Density increases with depth -> more absorption for small Θ_z
 - \bullet At 15 TeV, a chord with Θ_7 = 180 degrees is 1 absorption length
- The most sensitive angle (for σ) decreases with increasing E_{v}
 - \bullet At 10-100 TeV, absorption is mostly visible for $\Theta_z > 135$ degrees
 - ◆ At 10¹⁸⁺ eV, neutrinos are only visible near the horizon

IceCube v_{μ} absorption measurement

- 1 year of IC79 data, 10,784 up-going events with $E_{\mu} > 1$ TeV
- Mixture of atmospheric and astrophysical v
- PREM model for earth density as function (radius)
- Assume σ is a multiple R of the standard model
 - ◆ R is same for CC and NC
- Calculate transmission probability as a function of R, E_v and Θ_z
 - ♦ NC events cause v energy loss-> some spectral dependence
 - Same for τ regeneration, but it is not important here

Cross-section measurement

- Fit $N_{\text{evts}}(E_{\mu}, \Theta_{z})$ to find best R*flux (R* flux to reduce flux sens.)
- Nuisance params for atmospheric & astrophysical v uncertainties
 - Astrophysical flux and spectral index
 - Atmospheric flux, spectral index, K/π ratio, v/vbar
 - ♦ Astrophysical v assumed isotropic with $\Phi(v) = \Phi(vbar)$
- Energy range determined by studying change in significance by setting absorption =0 at lower/higher energies
 - Other methods would give different ranges

IceCube, Nature **551**, 596 (2017)

Future IceCube v_{μ} measurement

- **8** years of data; selection from astrophysical v_{μ} study
 - ◆ 300,000 events (30*previous study)
- Three energy bins:1-10 TeV, 10 TeV-1 PeV, and > 1 PeV
- Transmission probability fit with splines
- Improved systematic errors better model of optical properties of ice etc.

Asimov likelihood for 3 energy ranges

Energy Dependent Cross-sections

- Independent analysis of 6 years (58 events) of Icecube HESE (starting events) cascades (showers)
 - Small number of events limits precision
 - ♦ Cascades = v_e CC + all-flavor NC
 - → NC showers contain only part of E_v

IceCube cross-section with starting events

- 7.5 year "HESE" (high energy starting event) sample
 - ♦ 60 events with deposited energy > 60 TeV
- Fit approach is broadly similar to the v_{μ} track study
 - Better energy resolution, worse zenith angle resolution, and fewer events -> larger uncertainties
 - ◆ Ternary Particle ID (shower/track/double-shower
- Provided both Bayes and frequentist results

Parameter	Energy range		
$\overline{x_0}$	60 TeV to 100 TeV	$0.21^{+0.52}_{-0.21}$	$0.48^{+0.49}_{-0.37}$
-	$100\mathrm{TeV}$ to $200\mathrm{TeV}$	$1.65^{+1.49}_{-0.84}$	$1.50^{-0.37}_{-0.60}$
x_2	$200\mathrm{TeV}$ to $500\mathrm{TeV}$	$0.68^{+1.11}_{-0.43}$	$0.54_{-0.35}^{+0.60}$ $2.44_{-1.47}^{+5.10}$
x_3	500 TeV to 10 PeV	$0.68_{-0.43}^{+1.11} \\ 4.31_{-3.32}^{+13.26}$	$2.44^{+5.10}_{-1.47}$

IceCube measurement energy ranges

- Low energy limit: Earth absorption > measurement uncertainty
- High energy limit: enough flux for a measurement
- Not much flavor/sample dependence
 - Some dependence on the method used to find the sensitive range

Publication	Sample	Livetime	Energy range	NBins	Flavor PID
Ref. [71]	Upgoing tracks	$1\mathrm{yr}$	$6.3\mathrm{TeV}$ to $980\mathrm{TeV}$	1	${\mu}$
Ref. [84]	HESE cascades	$6\mathrm{yr}$	$18\mathrm{TeV}$ to $2\mathrm{PeV}$	4	e
Ref. [85]	HESE ternary	$7.5\mathrm{yr}$	$60\mathrm{TeV}$ to $10\mathrm{PeV}$	4	e,μ,τ

Table 1: Comparison of the three cross section measurements performed with IceCube data. All analyses fixed $\sigma^{\rm CC}/\sigma^{\rm NC}$ and $\sigma_{\nu}/\sigma_{\bar{\nu}}$ ratios based on the Standard Model predictions. In addition, $y^{\rm NC}=0.25$ was assumed in Ref. [84].

Flux drops rapidly with increasing energy (depending on spectral index); increases in maximum sensitive energy will be fairly modest (until the Gen2/radio era).

Radiodetection

- In the next ~ decade, radio-detection experiments could see neutrinos with energies > 10¹⁷ eV
 - ◆ If UHE cosmic rays are mostly protons, from the GZK process
 - → p + γ(cosmic microwave background radiation)-> Δ ⁺ -> n π ⁺
 - → Heavier ions produce fewer v
- Cross section sensitivity is from v just below the horizon
 - Good angular resolution is required

What are we measuring?

- Current TeV+ measurements give the per-nucleon cross-section for DIS on assumed isoscalar targets.
 - ♦ H₂O is not isoscalar
- Nuclear shadowing reduces the cross-section for heavy targets
 - ◆ 2-4% reduction small effect
- Diffractive interactions contribute to σ for E> 100 TeV
- The Glashow resonance for few PeV < E_v < 10 PeV</p>
 - ◆ DIS very difficult in this region, unless v/vbar ratio well known

Diffractive interactions

- Diffractive interactions (DI) occur via v -> virtual W[±]I[∓] pair fluctuations, which interact with the Coulomb field of a nucleus, becoming real
- In coherent interactions $\sigma \sim Z^2$, breaking the per-nucleon paradigm
 - Complicates Earth absorption studies
- DI have different inelasticity distributions than DIS

Additional discrimination - inelasticity

- Inelasticity probes different types of interactions, including v_{τ}
- $y = E_{hadronic shower}/E_{v}$
- v_{τ} interactions + v_{τ} -> $\mu\nu\nu$ have higher <inelasticity> then v_{μ}
- IceCube measured inelasticity in 2,650 starting track events
- Complementary probe to cross-section

What about v_{τ} ?

- $\sigma(v_{\tau})$ is difficult to measure at low energies, due to the low flux and small cross-section for identifiable CC events.
- Most atmospheric v_{τ} are from oscillation from other flavors; determining the flux depends on oscillation parameters
 - FASER ν has a short baseline & should see enough ν_{τ} for a measurement.
- For astrophysical v, oscillation is assumed to be complete, and the v_{τ} flux is as well known as the other flavors.
- Identifying v_{τ} events is hard. With a big enough detector, at PeV+ energies, double-bang events could be used. At energies >10¹⁷ eV, the τ lives long enough that this is difficult. Measurement of hadronic shower + lepton dE/dx (ala IceCube inelasticity study) may be a useful signature.
- Earth-skimming experiments observe a fairly narrow range of zenith angles. Is this enough to both normalize the flux and determine the cross-section?

Conclusions

- Accelerator experiments have measured the neutrino crosssection at energies up to 400 GeV
 - The standard model looks good, at the few percent level.
- In the next few years, FASERv at the LHC will extend accelerator measurements up to several TeV.
- Higher energies are probed by observing v absorption in the Earth.
 - Current experiments cover the TeV to PeV range. Near-future data will improve the precision in this energy range, while longer-term radio-detection experiments could reach the EeV range.
 - → These experiments will probe low-x, high Q² structure functions, and are sensitive to BSM physics.
 - ◆ Absorption studies are subject to significant systematic uncertainties, including due to limited knowledge of the ∨ beam.
 - This is not a problem for BSM studies, where orders-of-magnitude increase in the cross-section are expected, or for searches for large saturation effects. It will limit precision parton measurements.

Backup/extra